- |
As oceans waves rise and fall, they apply forces to the sea floor below and generate seismic waves. These seismic waves are so powerful and widespread that they show up as a steady thrum on seismographs, the same instruments used to monitor and study earthquakes.
That wave signal has been getting more intense in recent decades, reflecting increasingly stormy seas and higher ocean swell.
In a new study in the journal Nature Communications, colleagues and I tracked that increase around the world over the past four decades. These global data, along with other ocean, satellite and regional seismic studies, show a decadeslong increase in wave energy that coincides with increasing storminess attributed to rising global temperatures.
What seismology has to do with ocean waves
Global seismographic networks are best known for monitoring and studying earthquakes and for allowing scientists to create images of the planet’s deep interior.
These highly sensitive instruments continuously record an enormous variety of natural and human-caused seismic phenomena, including volcanic eruptions, nuclear and other explosions, meteor strikes, landslides and glacier-quakes. They also capture persistent seismic signals from wind, water and human activity. For example, seismographic networks observed the global quieting in human-caused seismic noise as lockdown measures were instituted around the world during the coronavirus pandemic.
However, the most globally pervasive of seismic background signals is the incessant thrum created by storm-driven ocean waves referred to as the global microseism.
Two types of seismic signals
Ocean waves generate microseismic signals in two different ways.
The most energetic of the two, known as the secondary microseism, throbs at a period between about eight and 14 seconds. As sets of waves travel across the oceans in various directions, they interfere with one another, creating pressure variation on the sea floor. However, interfering waves aren’t always present, so in this sense, it is an imperfect proxy for overall ocean wave activity.
A second way in which ocean waves generate global seismic signals is called the primary microseism process. These signals are caused by traveling ocean waves directly pushing and pulling on the seafloor. Since water motions within waves fall off rapidly with depth, this occurs in regions where water depths are less than about 1,000 feet (about 300 meters). The primary microseism signal is visible in seismic data as a steady hum with a period between 14 and 20 seconds.
What the shaking planet tells us
In our study, we estimated and analyzed historical primary microseism intensity back to the late 1980s at 52 seismograph sites around the world with long histories of continuous recording.
We found that 41 (79%) of these stations showed highly significant and progressive increases in energy over the decades.
The results indicate that globally averaged ocean wave energy since the late 20th century has increased at a median rate of 0.27% per year. However, since 2000, that globally averaged increase in the rate has risen by 0.35% per year.